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Perturbation theorems. - Our perturbation
??

1,2
eorems are stated

in the context of a theory of waveguide junctions .

A waveguide junction is a linear electromagnetic system possessing

ideal waveguide leads and is subject to excitation only through non-

attenuated modes in these leads. The domain of the electromagnetic

field is the finite region V; the surface S, the complete boundary of V,

consists of a part So, coinciding with a perfectly conducting surface, and

the parts S1, S2., . . . , S , where S is the terminal surface in the mth

of the n wavegmde leads. ~ithin V, ~e complex vectors ~, H of the

time -harmonic electromagnetic field satisfy Maxwell’s equatl~ns, which

ave wvitten E = f (H), H =~ (E), ueing the operators— —

t = (jus)-l . VX, W = -(jup)-l . ‘7X. (1)
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Here j is the imaginary unit, co/(2r) is the frequency, and p, e are in

general complex nonsymmetric dyadic point-functions, which reduce to

real scalar constants in the ideal portions of the wave guides.

The tangential components ~, IIt of E, H on Sm are expressible in--
the form

v

E=
T

o

–t
v

mp ‘m* ‘

p=l

Here Vm is the number of propagated modes in the mth wave gui~, v

and i are scalar coefficients, and the terminal basis -fields e ?$d

ho &#e real and subject to — mv

-P

ss
L&-A ‘s= ‘,, s

(3)

where 6 is a Kronecker delta and n denotes n on S

+

; here and subse-

quently !’in egrands in surface integra~ are scal~r trip~e products. In

what follows, single-letter indices p, q, . . . will be used to indicate

both wave guide and mode.

OnS, the boundary condition n X E . 0 applies. The additional

prescript!?on v . 6 for a given p~eter~ines an electromagnetic field

in V, which is~eno?~d ~ ,~ (~ ). Alternatively, the prescription i = 6

for given p determines a% ele&-~magnetic field in V; this is denote’?l ‘p

%(>), l+. It can be shown that

z= x~(h)h ndS ,
Pq s -q -P-

Y=
Pq 1

e #(~) n dS, (4)
S-P -

where Z and Y are the elements of the impedance and admittance

matrice$’~elatin~?he v’s and the i‘s.

In addition to an “original” system having the parameters p, c, we

must consider not only a “changed” system having parameters p’, & 1,

but also the systems “adjoint” to the original system and to the changed

system, respective~y. (By the “adjoint” of a given system is me ant one

having parameters p, ~ equal respectively to the transposes of the p, s of

the given system. If p and s are symmetric, the system is “self -ad joint”).

The region V and the terminal basis-fields are to be the same for all four

systems. Quantities associated with the changed and with the adjoint

systems are distinguished throughout by primes and circumflexes,

respectively.

The immittance matrix el ments of a given system and its ad joint
2

satisfy a reciprocity relation , e. g. , Z ‘5 Using the reciprocity
Pq qP.

23



relation, combining suitable expressions of the type (4), and converting to

a volume integral, one finds

2’-2
Pq Pq

= ju
1[

,~.(p’-p).~-?’(~).(’’-’). ~(~) dV . (5)

v 1

The region of integration V’ is the subregion of V in which one or both of

the primed parameters differ from the unprimed ones. Equation (5) is

one form of perturbation theorem. We also have

where S’ is the boundary of V’. The admittance analog of (6) is

(6)

(7)

The surface-integral expressions are presumed applicable (and are

applied) in some cases where a limiting procedure would be required to

give meaning to the volume-integral expressions --e. g. , when conduc -

tivity is allowed to become infinite in V’.

Applications. - The results obtained in the first and second examples

below are believed to be new, useful, and correct to the lowest order in

the perturbation parameters involved; the significance of the third will be

discussed.

(1) Finitely conductin g half-round inductive obstacles in finitely

conducting rectangular wave guide. The geometry and some of the nota-

tion are shown in Figures 1 and 2. Reference planes for the structure

coincide at z = O. The perturbed electric field-is estimated from the

unperturbed magnetic field using the surface -impedance approximation;

the unperturbed magnetic field is obtained to the desired approximation

with the aid of previous work on the perfectly conducting case 5. One

finds

z’
ee = Zee[l+(l-j)&(3n -8) 6 ]

P~ R’
(8)

where p and p respectively denote the permeability in the interior of
the wave guide??nd in the “metal, “ and 6 is the skin depth in the metal.

For (8) to be a “good” approximation it is necessary that 6<< R<<a.

(z’ is not calculated since it is not needed in obtaining the lowest-order

cor~~ction for the matched-termination reflection coefficient. )
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Fig, 1. Half-round inductive obstacle,
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Fig. 2. Equivalent network for hdf-ronnd obstacle,

(2) Junction of rectangular with filleted waveguide, Geometry and

geometrical parameters are shown in Figure 3. Perfect conductivity is

assumed. The unperturbed electromagn~tic field is that of a suitably

y:e:;:::ed ‘EIQ
-mode of the rectangular guide, traveling in the +z -

The integral (6) is evaluated, using the unperturbed magnetic

field as an approximation for the perturbed one, and using the familiar

artifice of as sming an infinitesimal attenuation to secure convergence.

From the impedance given by (6) one finds for the reflection coefficient

at the junction

. [~\,2 4- T

’11 (a,=

where kg is the (unperturbed) guide wavelength.

(3) Perfectly conducting half-round inductive obstacles as a pertur-

bation of perfectly conducting rectangular waveguide. Figures 1 and 2

are again pertinent. In this example it turns out, contrary to what one

might expect on fairly general grounds, that the expedient of
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approximating perturbed magnetic fields by unperturbed ones leads to
results that are distinctly not correct lowest-order values.
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Fig. 3. Junction of rectanguk and filleted waveguide.
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