3.1: PERTURBATION THEOREMS FOR WAVEGUIDE JUNCTIONS, WITH
APPLICATIONS

D. M. KERNS and W. T. GRANDY, JR.

National Bureau of Standards, Boulder, Colorado

1
’" are stated

Perturbation theorems. - Our perturbation t%leorems
in the context of a theory of waveguide junctions .

A waveguide junction is a linear electromagnetic system possessing
ideal waveguide leads and is subject to excitation only through non-
attenuated modes in these leads. The domain of the electromagnetic
field is the finite region V; the surface S, the complete boundary of V,
consists of a part S , coinciding with a perfectly conducting surface, and
the parts S, S,, . . . , S , where S 1is the terminal surface in the mth
of the n waveguide leads. nWithin Vv, If:%e complex vectors E, H of the
time-harmonic electromagnetic field satisfy Maxwell's equations, which
are weitten E =% (), H =% (E), using the operators

¢ = (jwe)'1 . VX, B o= —(jwp.)-l . VX. (1)
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Here j is the imaginary unit, @/{2w) is the frequency, and u, € are in
general complex nonsymmetric dyadic point-functions, which reduce to
real scalar constants in the ideal portions of the waveguides.

The tangential components E,, H of E, Hon S are expressible in
—t —t o — m
the form

v v
o o
= N = i . 2
= f Vp “mp 5 f 'mp < mp @)
=1 p..=1

Here Vi is the number of propagated modes in the mth waveguide, v
and i are scalar coefficients, and the terminal basis-fields e mp ar}il'd

h® F#¥e real and subject to
-

o .0
= 6
S.S —e-mp-}—lrn)\z—l'rn ds pX’ (3)

m

where 6 . is a Kronecker delta and n  denotes non S ; here and subse-
quently Y'r}tegrands in surface integrajfé1 are scalar trip]ﬁ products. In
what follows, single-letter indices p, q, . . . will be used to indicate
both waveguide and mode.

On S _, the boundary condition n X E = 0 applies. The additional
prescription v_ =8 for a given p determines an electromagnetic field
in V, which is%enotBd e ;¥ (e ). Alternatively, the prescriptioni = §

for given p determines an ele r?magnetic field in V; this is denote ap
Z(h ), h . It can be shown that
P TP
z=§thhnds, Y=ge e )nds 4
Pa g (—q)—p— Pq s—p#(—q)— ! (4)

where Z and Y are the elements of the impedance and admittance
matriceg%elating%he v's and the i's.

In addition to an "original" system having the parameters y, £, we
must consider not only a ''changed' system having parameters ', €',

but also the systems ''adjoint'" to the original system and to the changed
system, respectively. (By the "adjoint" of a given system is meant one
having parameters ﬁ, £ equal respectively to the transposes of the pu, € of
the given system. If p and ¢ are symmetric, the system is ''self-adjoint").
The region V and the terminal basis-fields are to be the same for all four
systems. Quantities associated with the changed and with the adjoint
systems are distinguished throughout by primes and circumflexes,
respectively,

The immittance matrix elzments of a given system and its adjoint

satisfy a reciprocity relation °, e.g., qu = iqp' Using the reciprocity
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relation, combining suitable expressions of the type (4), and converting to
a volume integral, one finds

1
z! -z =’wS [ﬁ. "op).h - @)L (e -e). &) |av . (5
pa” Zpg~ ) v'_p(u ). by - &R ( ). &) (5)
The region of integration V' is the subregion of V in which one or both of
the primed parameters differ from the unprimed ones. Equation (5) is
one form of perturbation theorem. We also have

2 oz =

pa” “pq --S.[_ﬁ ), - 4 By | nas (6)

where S' is the boundary of V'. The admittance analog of (6) is

! - = hodl Y bed} .." ) .
Yoqa ™ Ypq SS'[Eq » (Ep) gp#(gq)] n ds )

The surface-integral expressions are presumed applicable (and are
applied) in some cases where a limiting procedure would be required to
give meaning to the volume-integral expressions--e. g., when conduc-
tivity is allowed to become infinite in V',

Applications. - The results obtained in the first and second examples
below are believed to be new, useful, and correct to the lowest order in
the perturbation parameters involved; the significance of the third will be
discussed.

(1) Finitely conducting half-round inductive obstacles in finitely
conducting rectangular waveguide. The geometry and some of the nota-
tion are shown in Figures 1 and 2. Reference planes for the structure
coincide at z = 0. The perturbed electric field is estimated from the
unperturbed magnetic field using the surface-impedance approximation;
the unperturbed magnetic field is obtained to the desired approximation
with the aid of previous work on the perfectly conducting case 5. One
finds

M
z|ee=zee!:1+(l-j)—:{i3"1r-8)_f6{-} ’ ®)

where u and ¥ respectively denote the permeability in the interior of
the waveguidergnd in the '"metal,' and & is the skin depth in the metal.
For (8) to be a '"good" approximation it is necessary that 6<<R<<a.

(z' is not calculated since it is not needed in obtaining the lowest-order
correction for the matched-termination reflection coefficient. )
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Fig. 1. Half-round inductive obstacle.
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Fig. 2. Equivalent network for half-round obstacle.

(2) Junction of rectangular with filleted waveguide. Geometry and
geometrical parameters are shown in Figure 3. Perfect conductivity is
assumed. The unperturbed electromagnetic field is that of a suitably
normalized TE. -mode of the rectangular guide, traveling in the +z-
direction. The integral (6)is evaluated, using the unperturbed magnetic
field as an approximation for the perturbed one, and using the familiar
artifice of assuming an infinitesimal attenuation to secure convergence.
From the impedance given by (6) one finds for the reflection coefficient
at the junction

s _/)\gR\Z 4.
11_\ a 8ab

where \g is the (unperturbed) guide wavelength.

(3) Perfectly conducting half-round inductive obstacles as a pertur-~
bation of perfectly conducting rectangular waveguide. Figures 1 and 2
are again pertinent. In this example it turns out, contrary to what one
might expect on fairly general grounds, that the expedient of
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approximating perturbed magnetic fields by unperturbed ones leads to
results that are distinctly not correct lowest-order values.
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Fig. 3. Junction of rectangular and filleted waveguide.
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